
Object-Oriented Analysis and Design Using UML

Object-Oriented Analysis and Design
Using UML

Summer School

Object-Oriented Analysis and Design Using UML

Module 1

 Examining Object-Oriented Concepts
and Terminology

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 2 of 40

Objectives

Upon completion of this module, you should be able to:

• Describe the important object-oriented (OO) concepts
• Describe the fundamental OO terminology

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 3 of 40

Examining Object Orientation

OO concepts affect the whole development process:

• Humans think in terms of nouns (objects) and verbs
(behaviors of objects).

• With OOSD, both problem and solution domains are
modeled using OO concepts.

• The Unified Modeling Language (UML) is a de facto
standard for modeling OO software.

• OO languages bring the implementation closer to the
language of mental models. The UML is a good bridge
between mental models and implementation.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 4 of 40

Examining Object Orientation

“Software systems perform certain actions on objects of certain
types; to obtain flexible and reusable systems, it is better to base
their structure on the objects types than on the actions.” (Meyer
page vi)

OO concepts affect the following issues:

• Software complexity
• Software decomposition
• Software costs

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 5 of 40

Software Complexity

Complex systems have the following characteristics:

• They have a hierarchical structure.
• The choice of which components are primitive in the

system is arbitrary.
• A system can be split by intra- and inter-component

relationships. This separation of concerns enables you to
study each part in relative isolation.

• Complex systems are usually composed of only a few
types of components in various combinations.

• A successful, complex system invariably evolves from a
simple working system.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 6 of 40

Software Decomposition

In the Procedural paradigm, software is decomposed into a
hierarchy of procedures or tasks.

Manage HR Activities

Give Employee
a Promotion

Give Department
Employees a Raise

Give Engineer
a Promotion

Give Manager
a Promotion

Give Manager
 a Raise

Give Engineer
a Raise

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 7 of 40

Software Decomposition

In the OO paradigm, software is decomposed into a hierarchy
of interacting components (usually objects).

Department * Employee :HRServices

giveDeptARaise

increaseSalary

IT:Department

Samantha:Engineer

Fred:Engineer

Kathy:Manager

Manager Engineer

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 8 of 40

Software Costs

Development:

• OO principles provide a natural technique for
modeling business entities and processes from the
early stages of a project.

• OO-modeled business entities and processes are easier
to implement in an OO language.

Maintenance:

• Changeability, flexibility, and adaptability of software
is important to keep software running for a long time.

• OO-modeled business entities and processes can be
adapted to new functional requirements.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 9 of 40

Comparing the Procedural and OO
Paradigms

Procedural Paradigm OO Paradigm

Organizational
structure

Focuses on hierarchy of
procedures and
subprocedures

Data is separate from
procedures

Network of collaborating
objects

Methods (processes) are often
bound together with the state
(data) of the object

Protection
against
modification or
access

Data is difficult to protect
against inappropriate
modifications or access when
it is passed to or referenced by
many different procedures.

The data and internal methods
of objects can be protected
against inappropriate
modifications or access by
using encapsulation.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 10 of 40

Comparing the Procedural and OO
Paradigms

Procedural Paradigm OO Paradigm

Ability to
modify
software

Can be expensive and difficult
to make software that is easy
to change, resulting in many
“Brittle” systems

Robust software that is easy to
change, if written using good
OO principles and patterns

Reuse Reuse of methods is often
achieved by copy-and-paste or
1001 parameters.

Reuse of code by using generic
components (one or more
objects) with well-defined
interfaces. This is achieved by
extension of classes (or
interfaces) or by composition
of objects.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 11 of 40

Comparing the Procedural and OO
Paradigms

Procedural Paradigm OO Paradigm

Configuration
of special cases

Often requiresif or switch
statements. Modification is
risky because it often requires
altering existing code. So,
modifications must be done
with extreme care apart from
requiring extensive regression
testing. These factors make
even minor changes costly to
implement.

Polymorphic behavior can
facilitate the possibility of
modifications being primarily
additive, subtractive, or
substitution of whole
components (one or more
objects); thereby, reducing the
associated risks and costs.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 12 of 40

Surveying the Fundamental OO Concepts

• Objects
• Classes
• Abstraction
• Encapsulation
• Inheritance
• Interfaces
• Polymorphism
• Cohesion
• Coupling
• Class associations and object links
• Delegation

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 13 of 40

Objects

object = state + behavior

“An object has state, behavior, and identity; the structure and
behavior of similar objects are defined in their common class.”
(Booch Object Solutions page 305)

Objects:

• Have identity
• Are an instance of only one class
• Have attribute values that are unique to that object
• Have methods that are common to the class

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 14 of 40

Objects: Example

Objects

Stack

m
a
i
n account

branch

:Account

number="23167835"
balance=3745.56
type=”Savings”

<<operations>>
credit(amt)
debit(amt)
getBalance()

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 15 of 40

Classes

A class is a blueprint or prototype from which objects are
created. (The Java™ Tutorials)

Classes provide:

• The metadata for attributes
• The signature for methods
• The implementation of the methods (usually)
• The constructors to initialize attributes at creation time

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 16 of 40

Classes: Example

ObjectsClasses

Stack

m
a
i
n sourceAccount

destinationAccount

source:Account

number=”23167835”
balance=3745.56
type=”Savings”

Account

number:String
balance:double
type:String

credit(amt:double)
debit(amt:double)
getBalance():double

destination:Account

number=”37458367”
balance=204.35l
type=Checking

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 17 of 40

Abstraction

In OO software, the concept of abstraction enables you to
create a simplified, but relevant view of a real world object
within the context of the problem and solution domains.

• The abstraction object is a representation of the real
world object with irrelevant (within the context of the
system) behavior and data removed.

• The abstraction object is a representation of the real
world object with currently irrelevant (within the
context of the view) behavior and data hidden.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 18 of 40

Abstraction: Example

Engineer

fname:String
lname:String
salary:Money

increaseSalary(amt)
designSoftware()
implementCode()

Engineer

fname:String
lname:String
salary:Money
fingers:int
toes:int
hairColor:String
politicalParty:String

increaseSalary(amt)
designSoftware()
implementCode()
eatBreakfast()
brushHair()
vote()

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 19 of 40

Encapsulation

Encapsulation means“to enclose in or as if in a capsule”
(Webster New Collegiate Dictionary)

Encapsulation is essential to an object. An object is a capsule
that holds the object’s internal state within its boundary.

In most OO languages, the term encapsulation also includes
information hiding, which can be defined as: “hide
implementation details behind a set of non-private methods”.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 20 of 40

Encapsulation: Example

ObjectsClasses

Stack

ma
in employee

department

:Engineer

fname="Fred"
lname="Cartz"
salary=US$47,000

Engineer

-fname:String
-lname:String
-salary:Money

+getFirstName():String
+getLastName():String
+setFirstName(:String)
+increaseSalary(amt)
+analyzeReq()
+designSoftware()
+implementCode()

name = employee.fname; name = employee.getFirstName();

employee.fname = "Samantha"; employee.setFirstName("Samantha");

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 21 of 40

Inheritance

Inheritance is “a mechanism whereby a class is defined in
reference to others, adding all their features to its own.” (Meyer
page 1197)

Features of inheritance:

• Attributes and methods from the superclass are
included in the subclass.

• Subclass methods can override superclass methods.
• The following conditions must be true for the

inheritance relationship to be plausible:
• A subclass object is a (is a kind of) the superclass object.
• Inheritance should conform to Liskov’s Substitution

Principle (LSP).

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 22 of 40

Inheritance

• Specific OO languages allow either of the following:
• Single inheritance, which allows a class to directly

inherit from only one superclass (for example, Java).
• Multiple inheritance, which allows a class to directly

inherit from one or more superclasses (for example,
C++).

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 23 of 40

Inheritance: Example

Employee
-fname:String
-lname:String
-salary:Money

+getFirstName():String
+getLastName():String
+increaseSalary(amt)

Manager
-quarterlyBonus:Money

+increaseSalary(amt)
+increaseBonus()
+playGolfWithClient()

Engineer
-education:String
-hardware:String

+getEducation():String
+getHardware():String
+analyzeReq()
+designSoftware()
+implementCode()

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 24 of 40

Abstract Classes

A class that containsone or more abstractmethods,and
therefore can never be instantiated. (Sun Glossary)

Features of an abstract class:

• Attributes are permitted.
• Methods are permitted and some might be declared

abstract.
• Constructors are permitted, but no client may directly

instantiate an abstract class.
• Subclasses of abstract classes must provide implementations

of all abstract methods; otherwise, the subclass must also be
declared abstract.

• In the UML, a method or a class is denoted as abstract by using
italics, or by appending the method name or class name with
{abstract}.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 25 of 40

Abstract Classes: Example

{abstract}
Employee

-fname:String
-lname:String
-salary:Money

+getFirstName():String
+getLastName():String
+increaseSalary(amt)

Manager
-quarterlyBonus:Money

+increaseSalary(amt)
+increaseBonus()
+playGolfWithClient()

Engineer
-education:String
-hardware:String

+getEducation():String
+getHardware():String
+increaseSalary(amt)
+analyzeReq()
+designSoftware()
+implementCode()

Concrete subclasses
must implement this method

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 26 of 40

Interfaces

Features of Java technology interfaces:

• Attributes are not permitted (except constants).
• Methods are permitted, but they must be abstract.
• Constructors are not permitted.
• Subinterfaces may be defined, forming an inheritance

hierarchy of interfaces.

A class may implement one or more interfaces.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 27 of 40

Interfaces: Example

Room

Scheduleable
«interface»

+getObjectID():ID
+notifyAboutActivity()

Office ConfRoom

Employee

Manager Engineer

Equipment

Projector Computer

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 28 of 40

Polymorphism

Polymorphism is “a concept in type theory, according to which
a name (such as a variable declaration) may denote objects of
many different classesthat are related by some common
superclass [type].” (Booch OOAD page 517)

Aspects of polymorphism:

• A variable can be assigned different types of objects at
runtime provided they are a subtype of the variable’s
type.

• Method implementation is determined by the type of
object, not the type of the declaration (dynamic
binding).

• Only method signatures defined by the variable type
can be called without casting.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 29 of 40

Polymorphism: Example

List list = getProjectTeam();
for (int i=0; i<list.size(); i++) {
 Employee employee = (Employee) list.get(i);
 employee.increaseSalary(0.10); //10%
}

ObjectsClasses

Stack

m
a
i
n employee

list

:List

Employee Kathy:Manager

Fred:Engineer

Samantha:EngineerManager Engineer

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 30 of 40

Polymorphism: Example

Scheduleable
«interface»

+getObjectID():ID
+notifyAboutActivity()

Schedule

+add(:Scheduleable,
 :DateTime,
 :Duration)
+remove(:Scheduleable)
+notify(:DateTime)

Employee Equipment ConfRoom

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 31 of 40

Cohesion

In software, the concept of cohesion refers to how well a given
component or method supports a single purpose.

• Low cohesion occurs when a component is responsible
for many unrelated features.

• High cohesion occurs when a component is responsible
for only one set of related features.

• A component includes one or more classes. Therefore,
cohesion applies to a class, a subsystem, and a system.

• Cohesion also applies to other aspects including
methods and packages.

• Components that do everything are often described
with the Anti-Pattern term of Blob components.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 32 of 40

Cohesion: Example

SystemServices

makeEmployee
makeDepartment
login
logout
deleteEmployee
deleteDepartment
retrieveEmpByName
retrieveDeptByID

login
logout

makeEmployee
deleteEmployee
retrieveEmpByName

makeDepartment
deleteDepartment
retrieveDeptByID

LoginService

EmployeeService

DepartmentService

Low Cohesion High Cohesion

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 33 of 40

Coupling

Coupling is “the degree to which classes within our system are
dependent on each other.” (Knoernschild page 174)

Client

No Coupling

Loose Coupling

Abstract Coupling

Service Client
{abstract}

Service

Client «interface»
Service

Client Service

Tight Coupling

Service

Client Service

Supplier

Supplier

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 34 of 40

Class Associations and Object Links

Dimensions of associations include:

• The roles that each class plays
• The multiplicity of each role

• 1 denotes exactly one
• 1..* denotes one or more
• 0..* or* denotes zero or more

• The direction (or navigability) of the association

Object links:

• Are instances of the class association
• Are one-to-one relationships

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 35 of 40

Class Associations and Object
Links: Example

Department
1..*

dept

1

1
employees

1
mgr

dept
Employee

IT:Department

Samantha:Engineer

Fred:Engineer

Kathy:Manager

Manager Engineer

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 36 of 40

Delegation

Many computing problems can be easily solved by delegation
to a more cohesive component (one or more classes) or
method.

• Delegation is similar to how we humans behave.
• A manager often delegates tasks to an employee with the

appropriate skills.
• You often delegate plumbing problems to a plumber.
• A car delegates accelerate, brake, and steer messages to

its subcomponents, who in turn delegate messages to
their subcomponents. This delegation of messages
eventually affects the engine, brakes, and wheel direction
respectively.

• OO paradigm frequently mimics the real world.

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 37 of 40

Delegation

• The ways you delegate in OO paradigm include
delegating to:
• A more cohesive linked object
• A collection of cohesive linked objects
• A method in a subclass
• A method in a superclass
• A method in the same class

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 38 of 40

Delegation: Example Problem

{abstract}
Employee

-fname:String
-lname:String
-salary:Money

+getFirstName():String
+getLastName():String
+increaseSalary(amt)

*

Manager
-quarterlyBonus:Money

+increaseSalary(amt)
+increaseBonus()
+playGolfWithClient()

Engineer
-education:String
-hardware:String

+getEducation():String
+getHardware():String
+increaseSalary(amt)
+analyzeReq()
+designSoftware()
+implementCode()

SportsAnd
SocialClub

*
Pension
Scheme

Human
Resources

*

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 39 of 40

Delegation: Example Solution

Employee

-fname:String
-lname:String

+getFirstName():String
+getLastName():String

+increaseSalary(amt)

Manager
-quarterlyBonus:Money

+increaseSalary(amt)
+increaseBonus()
+playGolfWithClient()

Engineer
-education:String
-hardware:String

+getEducation():String
+getHardware():String
+increaseSalary(amt)
+analyzeReq()
+designSoftware()
+implementCode()

SportsAnd
SocialClub

*
Pension
Scheme

Human
Resources

calls:
jobRole.increaseSalary(amt)

{abstract}
JobRole

+increaseSalary(amt)

1

-salary:Money

*

*

+setRole(:JobRole)
+getJobRole():JobRole

Summer School

Object-Oriented Analysis and Design Using UML Module 1, slide 40 of 40

Summary

• Object orientation is a model of computation that is
closer to how humans think about problems.

• OO paradigm provides a set of useful concepts.

Summer School

Object-Oriented Analysis and Design Using UML

Module 2

 Introducing Modeling and the Software
Development Process

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 2 of 32

Objectives

Upon completion of this module, you should be able to:

• Describe the Object-Oriented Software Development
(OOSD) process

• Describe how modeling supports the OOSD process
• Describe the benefits of modeling software
• Explain the purpose, activities, and artifacts of the

following OOSD workflows: Requirements Gathering,
Requirements Analysis, Architecture, Design,
Implementation, Testing, and Deployment

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 3 of 32

Describing Software Methodology

A methodology is “a body of methods,rules,and postulates
employed by a discipline” [Webster New Collegiate Dictionary]

• In OOSD, methodology refers to the highest-level
organization of a software project.

• This organization can be decomposed into
medium-level phases. Phases are decomposed into
workflows (disciplines). Workflows are decomposed
into activities.

• Activities transform the artifacts from one workflow to
another. The output of one workflow becomes the
input into the next.

• The final artifact is a working software system that
satisfies the initial artifacts: the system requirements.

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 4 of 32

The OOSD Hierarchy

Tools/
Artifacts

Methodology/Phases

Activities

Workflows
Guides Flow

Implemented by Tools

Influences
Tool Choices

Supports
Activities

OO Technology

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 5 of 32

Listing the Workflows of the OOSD Process

Software development has traditionally encompassed the
following workflows:

• Requirements Gathering
• Requirements Analysis
• Architecture
• Design
• Implementation
• Testing
• Deployment

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 6 of 32

Describing the Software Team Job Roles

Project Stakeholders

Client-Side Development-Side

Business Owner

Managers

Users

Project Manager

Business Analyst

Software Architect

Software Designer

Software Programmer

Software Tester

Deployment Specialist

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 7 of 32

Exploring the Requirements Gathering
Workflow

Workflow Purpose Description
Requirements
Gathering

Determine what the
system must do

Determine:
• With whom the system interacts (actor)
• What behaviors (called use cases) that

the system must support
• Detailed behavior of each use case,

which includes the low-level functional
requirements (FRs)

• Non-functional requirements (NFRs)

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 8 of 32

Activities and Artifacts of the Requirements
Gathering Workflow

Meet business owner to identify a
business-oriented view of the requirements

Meet project stakeholders to identify
additional and refined requirements

Business Owner’s
Mental Model

Stakeholders’
Mental Model

Artifacts include:
Use case diagrams,
Use case scenarios,
Use case description
including (FRs + NFRs),

Additional specifications:
System-wide NFRs,
Project risks,
Project constraints,
Business rational (purpose),
Future business direction,
Stakeholders,
Glossary of terms

Artifacts

Artifacts

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 9 of 32

Exploring the Requirements Analysis
Workflow

Workflow Purpose Description

Requirements
Gathering

Determine what the
system must do

Requirements
Analysis

Model the existing
business processes

Determine:
• The detailed behavior of each use case
• Supplementary use cases
• The key abstractions that exist in the

current increment of the problem
domain

• A business domain class diagram

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 10 of 32

Activities and Artifacts of the Requirements
Analysis Workflow

Analyze the use case scenarios to refine
Use Case forms and diagram

Optionally, create graphical views of
use case flows and business processes

Represent the relationships of the
key abstractions in a Domain model.

Optionally, verify the Domain model using
Object diagrams from UC scenarios.

Determine the key abstractions
optionally using CRC analysis.

Refined Use Case
diagram & forms
Supplementary Spec.

C
R C

C
R C

C
R C

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 11 of 32

Exploring the Architecture Workflow

Workflow Purpose Description

Requirements
Gathering

Determine what the
system must do

Requirements
Analysis

Model the existing
business processes

Architecture Model the
high-level system
structure to satisfy
the NFRs

• Develop the highest-level structure of
the software solution

• Identify the technologies that will
support the Architecture model

• Elaborate the Architecture model with
Architectural patterns to satisfy NFRs

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 12 of 32

Activities and Artifacts of the Architecture
Workflow

Arch
Code

Select an architecture type
for the system.

Refine the Architecture model
to satisfy the NFRs.

Document the technology choices
in a Tier and Layer diagram.

Create the Architecture baseline.

Create a detailed Deployment diagram for
the architecturally significant use cases.

Client Server

Client Server

domain backendclient

COBRA DBMSSwing

Ultra60 SunFirePC

Domain artifacts

Note: The Architect abstracts
the architecturally significant
aspects from the Domain
artifacts

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 13 of 32

Exploring the Design Workflow

Workflow Purpose Description
Requirements
Gathering

Determine what the
system must do

Requirements
Analysis

Model the existing
business processes

Architecture Model the high-
level system
structure to satisfy
the NFRs

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 14 of 32

Exploring the Design Workflow

Workflow Purpose Description

Design Model how the
system will support
the use cases

• Create a Design model for a use case
using Interaction diagrams

• Identify and model objects with non-
trivial states using a State Machine
diagram

• Apply design patterns to the Design
model

• Create a Solution model by merging the
Design and Architecture models

• Refine the Domain model

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 15 of 32

Activities and Artifacts of the Design
Workflow

Use Case form

Create a Design model for a use case
using Robustness analysis.

Refine the Domain model to
satisfy the Solution model.

Identify and model non-trivial object
state using a State Machine diagram.

Apply design patterns to the
Design model.

Create the Solution model by merging
the Design and Architecture models.

Client
TCP

Server

open() edit()

close() save()

Clean Dirty

edit()

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 16 of 32

Exploring the Implementation, Testing, and
Deployment Workflows

Workflow Purpose Description

Requirements
Gathering

Determine what the
system must do

Requirements
Analysis

Model the existing
business processes

Architecture Model the high-
level system
structure to satisfy
the NFRs

Design Model how the
system will support
the use cases

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 17 of 32

Exploring the Implementation, Testing, and
Deployment Workflows

Workflow Purpose Description

Implementation,
Testing, and
Deployment

Implement, test,
and deploy the
system

• Implement the software
• Perform testing
• Deploy the software to the

production environment

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 18 of 32

Activities and Artifacts of the
Implementation, Testing, and Deployment

Workflows

Use Case form Test Plan

Implement the software solution
using the Solution model.

Deploy the software solution using
the architecture Deployment diagram.

Test the software solution against
use case scenarios.

open() edit()

close() save()

Clean Dirty

edit()

Client ServerTCP

Code

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 19 of 32

Exploring the Benefits of Modeling Software

The inception of every software project starts as an idea in
someone’s mind.

To construct a realization of that idea, the development team
must create a series of conceptual models that transform the
idea into a production system.

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 20 of 32

What is a Model?

“A model is a simplification of reality.” (Booch UML User Guide
page 6)

• A model is an abstract conceptualization of some entity
(such as a building) or a system (such as software).

• Different views show the model from different
perspectives.

(Buffalo Design © 2002. Images used with permission.)

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 21 of 32

Why Model Software?

“We build models so that we can better understand the system
we are developing.” (Booch UML User Guide page 6)

Specifically, modeling enables us to:

• Visualize new or existing systems
• Communicate decisions to the project stakeholders
• Document the decisions made in each OOSD workflow
• Specify the structure (static) and behavior (dynamic)

elements of a system
• Use a template for constructing the software solution

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 22 of 32

OOSD as Model Transformations

Software development can be viewed as a series of
transformations from the Stakeholder’s mental model to the
actual code:

Stakeholders
Mental Model

Requirements
Model

Solution
Model

Code

Architecture
Model

Design
Model

NFRs

FRs

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 23 of 32

Defining the UML

“The Unified Modeling Language(UML) is a graphical
language for visualizing, specifying, constructing,and
documenting theartifactsof a software-intensivesystem.”
(UML v1.4 page xix)

Using the UML, a model is composed of:

• Elements (things and relationships)
• Diagrams (built from elements)
• Views (diagrams showing different perspectives of a

model)

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 24 of 32

UML Elements

Things Relationships

Dependencies
Actors and Uses Cases

Components and Hardware

Groups of Things Annotations

States and Activities

Classes and Objects

Associations

Generalizations

Realizations

Applet.java calculator.jar

actor

use case

employer employer

Idle

package

Class Class

-load : float = 0
-maxLoad : float = 0

+getLoad() : float
+getMaxLoad() : float
+addBox(float weight)

weight in newtons

client:PC/Win95

search for available rooms
and populate room list in GUI

obj:Class

Component

browser

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 25 of 32

UML Diagrams

Use CaseClass Object

1.msg 1.1

1.2

Communication

Activity

open() edit()

close() save()

Clean Dirty

edit()

State Machine

gui

domain

Package

Component Deployment

Client ServerTCP
1.msg 1.1

1.2

Sequence

Interaction Overview

TimingProfile

Metamodel
Stereotypes
Constraints

Composite Structure

Car

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 26 of 32

UML Diagram Categories

Use CaseClass Object

1.msg 1.1

1.2

Communication

Activity

open() edit()

close() save()

Clean Dirty

edit()

State Machine

gui

domain

Package

Component Deployment

Client ServerTCP
1.msg 1.1

1.2

Sequence

Interaction Overview

TimingProfile

Metamodel
Stereotypes
Constraints

Composite Structure

Car

Structural Behavioral

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 27 of 32

Common UML Elements and Connectors

UML has a few elements and connectors that are common
across UML diagrams. These include:

• Package
• Note
• Dependency
• Stereotypes

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 28 of 32

Packages and Notes

Package

Notes

Open
Door

Close
Door

Lock
Door

Lock
Door

Door Access Use Cases View Lock Door View

Account

number:String
balance:double
type:String

credit(amt:double)
debit(amt:double)
getBalance():double

balance := balance + amt

balance := balance - amt

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 29 of 32

Dependency and Stereotype

Account

number:String
balance:double
type:String

credit(amt:double)
debit(amt:double)
getBalance():double

Account

number
balance
type

credit
debit
getBalance

«refines»

«client»
Web Browser

«server»
Hotel Booking
Web Server

«http(s)»

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 30 of 32

What UML Is and Is Not

UML is not: But it:

Used to create an executable model Can be used to generate code skeletons

A programming language Maps to most OO languages

A methodology Can be used as a tool within the
activities of a methodology

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 31 of 32

UML Tools

UML itself is a tool. You can create UML diagrams on paper
or a white board. However, software tools are available to:

• Provide computer-aided drawing of UML diagrams
• Support (or enforce) semantic verification of diagrams
• Provide support for a specific methodology
• Generate code skeletons from the UML diagrams
• Organize all of the diagrams for a project
• Automatic generation of modeling elements for design

patterns, Java™ Platform, Enterprise Edition (Java™
EE platform) components, and so on

Summer School

Object-Oriented Analysis and Design Using UML Module 2, slide 32 of 32

Summary

• The OOSD process starts with gathering the system
requirements and ends with deploying a working
system.

• Workflows define the activities that transform the
artifacts of the project from the requirements model to
the implementation code (the final artifact).

• The UML supports the creation of visual artifacts that
represent views of your models.

Summer School

Object-Oriented Analysis and Design Using UML

Module 3

 Creating Use Case Diagrams

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 2 of 37

Objectives

Upon completion of this module, you should be able to:

• Justify the need for a Use Case diagram
• Identify and describe the essential elements in a UML

Use Case diagram
• Develop a Use Case diagram for a software system

based on the goals of the business owner
• Develop elaborated Use Case diagrams based on the

goals of all the stakeholders
• Recognize and document use case dependencies using

UML notation for extends, includes, and generalization
• Describe how to manage the complexity of Use Case

diagrams by creating UML packaged views

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

3,
 s

lid
e

3
o

f 3
7

P
ro

ce
ss

 M
ap

S
ta

ke
ho

ld
er

s
M

en
ta

l M
od

el

R
eq

ui
re

m
en

ts
M

od
el

S
ol

ut
io

n
M

od
el

C
od

e

A
rc

hi
te

ct
ur

e
M

od
el

D
es

ig
n

M
od

el
FR

s

N
FR

s

M
ee

t p
ro

je
ct

 s
ta

ke
ho

ld
er

s
to

 id
en

tif
y

ad
di

tio
na

l a
nd

 r
ef

in
ed

 r
eq

ui
re

m
en

ts

B
u

si
n

e
ss

 O
w

n
e

r’s
M

e
n

ta
l M

od
e

l

S
ta

ke
h

o
ld

e
rs

’
M

e
n

ta
l M

o
d

el

A
rt

ifa
ct

s

A
rt

ifa
ct

s

M
ee

t b
us

in
es

s
ow

ne
r

to
 id

en
tif

y
a

bu
si

ne
ss

-o
rie

nt
ed

 v
ie

w
 o

f t
he

 r
eq

ui
re

m
en

ts

A
rt

ifa
ct

s
in

cl
ud

e:
U

se
 C

as
e

di
ag

ra
m

s

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 4 of 37

Justifying the Need for a Use Case Diagram

Following are reasons a Use Case diagram is necessary:

• A Use Case diagram enables you to identify—by
modeling—the high-level functional requirements
(FRs) that are required to satisfy each user’s goals.

• The client-side stakeholders need a big picture view of
the system.

• The use cases form the basis from which the detailed
FRs are developed.

• Use cases can be prioritized and developed in order of
priority.

• Use cases often have minimal dependencies, which
enables a degree of independent development.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 5 of 37

Identifying the Elements of a Use Case
Diagram

A Use Case diagram shows the relationships between actors
(roles) and the goals they wish to achieve.

A physical job title can assume multiple actors (roles).

Actor

Receptionist

BookingAgent

Association System name

Manage Reservation

Check In Customer

Hotel System

System boundary

Use Case

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 6 of 37

Identifying the Elements of a Use Case
Diagram

This diagram illustrates an alternate style that explicitly
shows an association between the Receptionist actor (role)
and the Manage Reservation use case.

Actor

Receptionist

BookingAgent

Association System name

Manage Reservation

Check In Customer

Hotel System

System boundary

Use Case

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 7 of 37

Actors

An actor:

• Models a type of role that is external to the system and
interacts with that system

• Can be a human, a device, another system, or time
• Can be primary or secondary

• Primary: Initiates and controls the whole use case
• Secondary: Participates only for part of the use case

A single physical instance of a human, a device, or a system
may play the role of several different actors.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 8 of 37

Actors

This icon represents a
human actor (user) of the
system.

This icon can represent
any actor, but is usually
used to represent
external systems, devices,
or time.

This icon represents a
time-trigger mechanism
that activates a use case.

BookingAgent

<<System>>

MoviesOn-
DemandSystem

Time

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 9 of 37

Use Cases

A use case describes an interaction between an actor and the
system to achieve a goal.

• A use case encapsulates a major piece of system
behavior with a definable outcome.

• A use case is represented as an oval with the use case
title in the center.

• A good use case title should consist of a brief but
unambiguous verb-noun pair.

• A use case can often be UI independent.

Manage Reservation Use case title

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 10 of 37

System Boundary

The use cases may optionally be enclosed by a rectangle that
represents the system boundary.

The system boundary box is optional.This equivalent Use Case diagram
shows the system boundary for clarity.

Receptionist

BookingAgent

Manage Reservation

Check In Customer

Receptionist

BookingAgent

Manage Reservation

Check In Customer

Hotel Reservation System

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 11 of 37

Use Case Associations

A use case association represents “the participation of an actor
in a use case.” (UML v1.4 spec. page 357)

• An actor must be associated with one or more use
cases.

• A use case must be associated with one or more actors.
• An association is represented by a solid line with no

arrowheads.However, some UML tools use arrows by
default.

Receptionist

Check In Customer

Association

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 12 of 37

Creating the Initial Use Case Diagram

One of the primary aims of the initial meeting with the
project’s business owner is to identify the business-significant
use cases.

• A use case diagram may be created during the meeting.
• Alternatively, the diagrams can be created after the

meeting from textual notes.

The next two slides present some text showing an abstract of
the use-case-specific topics discussed during the meeting.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 13 of 37

Creating the Initial Use Case Diagram

The booking agent (internal staff) must be able to manage reservations on behalf
of customers who telephone or e-mail with reservation requests. The majority of
these requests will make a new reservation, but occasionally they will need to
amend or cancel a reservation. A reservation holds one or more rooms of a room
type for a single time period, and must be guaranteed by either an electronic
card payment or the receipt of a purchase order for corporate customers and
travel agents. These payment guarantees must be saved for future reference.

A reservation can also be made electronically from the Travel Agent system and
also by customers directly via the internet.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 14 of 37

Creating the Initial Use Case Diagram

The receptionist must be able to check in customers arriving at the hotel. This
action will allocate one or more rooms of the requested type. In most cases, a
further electronic card payment guarantee is required.

Most receptionists will be trained to perform the booking agent tasks for
customers who arrive without a booking or need to change a booking.

The marketing staff will need to manage promotions (special offers) based on a
review of past and future reservation statistics. The marketing staff will
elaborate on the detailed requirements in a subsequent meeting.

The management needs a daily status report, which needs to be produced when
the hotel is quiet. This activity is usually done at 3 a.m.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 15 of 37

Creating the Initial Use Case Diagram

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 16 of 37

Identifying additional Use Cases

During the meeting with the business owner, you will
typically discover 10 to 20 percent of the use cases needed for
the system.

During the meeting with the other stakeholders, you will
discover many more use case titles that you can add to the
diagram. For example:

• Maintain Rooms
• Create, Update, and Delete

• Maintain RoomTypes
• Create, Update, and Delete

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 17 of 37

Identifying additional Use Cases

The time of discovery depends upon the development
process.

• In a non-iterative process:
• You ideally need to discover all of the remaining use

case titles, bringing the total to 100 percent.
• However, this is a resource-intensive task and is

rarely completely accurate.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 18 of 37

Identifying additional Use Cases

• In an iterative/incremental development process, an
option is to:
• Discover a total of 80 percent of the use case titles in

the next few iterations for 20 percent of the effort.
This is just one of the many uses of the 80/20 rule.

• Discover the remaining 20 percent of use case titles
in the later iterations for minimal effort.

This process works well with software that is built to
accommodate change.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 19 of 37

Use Case Elaboration

During the meeting with the other stakeholders, you will
discover many more use cases that you can add to the diagram.

You might also find that some use cases are too high-level. In this
case, you can introduce new use cases that separate the
workflows.

Example: Becomes:

Manage Reservation

BookingAgent

Create Reservation

Delete Reservation

Update Reservation

BookingAgent

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 20 of 37

Expanding High-Level Use Cases

• Typically, managing an entity implies being able to
Create, (Retrieve), Update, and Delete an entity (so
called, CRUD operations). Other keywords include:
• Maintain
• Process

• Other high-level use cases can occur. Identify these by
analyzing the use case scenarios and look for
significantly divergent flows.

• If several scenarios have a different starting point, these
scenarios might represent different use cases.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 21 of 37

Expanding High-Level Use Cases

• The expanded diagram:

Hotel System

Create Reservation

Delete Reservation

Update Reservation

Check In Customer

Check Out Customer

BookingAgent

Receptionist

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 22 of 37

Analyzing Inheritance Patterns

Inheritance can occur in Use Case diagrams for both actors
and use cases:

• An actor can inherit all of the use case associations from
the parent actor.

• A use case can be subclassed into multiple, specialized
use cases.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 23 of 37

Actor Inheritance

An actor can inherit all of the use case associations from the
parent actor.

This inheritance should be used only if you can apply the “is
a kind of” rule between the actors.

Bank System

Standard Customer

Gold Customer

Perform Gold
Services

Perform Standard
Services

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 24 of 37

Use Case Specialization

A use case can be subclassed into multiple, specialized use
cases:

• Use case specializations are usually identified by
significant variations in the use case scenarios.

• If the base use case cannot be instantiated, you must
mark it as abstract.

Check In Customer {abstract}

Check In Standard
Customer

Check In VIP
Customer

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 25 of 37

Analyzing Use Case Dependencies

Use cases can depend on other use cases in two ways:

• One use case (a) includes another use case (i).
This means that the one use case (a) requires the
behavior of the other use case (i) and always
performs the included use case.

• One use case (e) can extend another use case (b).
This means that the one use case (e) can (optionally)
extend the behavior of the other use case (b).

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 26 of 37

The «include» Dependency

The include dependency enables you to identify behaviors of
the system that are common to multiple use cases.

This dependency is drawn like this:

Librarian

Check Out Book

Return Book

Identify Book

<<include>>

<<include>>

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 27 of 37

The «include»Dependency

Identifying and recording common behavior:

• Review the use case scenarios for common behaviors.

• Give this behavior a name and place it in the Use Case
diagram with an«include» dependency.

BookingAgent

Update Reservation

Delete Reservation

Identify Existing Reservation

<<include>>

<<include>>

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 28 of 37

The «include»Dependency

Identifying behavior associated with a secondary actor:

• Review the use case scenarios for significant behavior
that involves a secondary actor.

CheckIn Customer

Receptionist

<<device>>

Telephone
System

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 29 of 37

The «include»Dependency

• Split the behavior that interacts with this secondary
actor. Give this behavior a Use Case title, and place it in
the Use Case diagram with an «include» dependency.

<<include>>
Enable Room Phone

Receptionist

<<device>>

Telephone
System

CheckIn Customer

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 30 of 37

The «extend» Dependency

The extend dependency enables you to identify behaviors of
the system that are not part of the primary flow, but exist in
alternate scenarios.

This dependency is drawn like this:

Issue a Fine
<<extend>>

Librarian

Return a Book

extension points

overdueBook

condition: fine is due
extension points: overdue book

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 31 of 37

The «extend» Dependency

Identifying and recording behaviors associated with an
alternate flow of a use case:

• Review the use case scenarios for significant and
cohesive sequences of behavior.

• Give this behavior a name and place it in the Use Case
diagram with a«extend» dependency.

<<extend>>
Create Customer

Create Reservation

BookingAgent
condition: not an existing customer
extension points: new customer

extension points:
new customer

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 32 of 37

A Combined Example
Hotel System

BookingAgent
Update Reservation

Delete Reservation

Identify Existing
Reservation {abstract}

<<include>>

<<include>>
Check In Customer Enable Room

Phone
Receptionist

Identify Existing Reservation
by Reservation Number

Identify Existing Customer
by Customer Details

<<extend>>
Create Customer

Create Reservation
extension points:

new customer

condition: not an existing customer
extension points: new customer

<<include>>

<<device>>

Telephone
System

This is a abstract of the complete
requirements.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 33 of 37

Packaging the Use Case Views

It should be apparent that any non-trivial software
development would need more use cases than could be
viewed at one time. Therefore, you need to be able to manage
this complexity.

One way of managing this complexity is to break down the
use cases into packages.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 34 of 37

Packaging the Use Case Views

• You can look inside each package to reveal the detailed
content.

• A use case element may exist in multiple packages,
where it participates in multiple views.

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 35 of 37

Packaging the Use Case Views

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 36 of 37

Summary

• A Use Case diagram provides a visual representation
of the big-picture view of the system.

• The Use Case diagram represents the actors that use the
system, the use cases that provide a behavior with a
definable goal for an actor, and the associations
between them.

• Use Case diagrams can be elaborated to show a
software system based on the goals of the business
owner and all the other stakeholders

Summer School

Object-Oriented Analysis and Design Using UML Module 3, slide 37 of 37

Summary

• Use Case diagrams can be elaborated to show use case
dependencies by using UML notation for extends,
includes, and generalization.

• Complex Use Case diagrams can be broken down into
views by using UML packages.

Summer School

Object-Oriented Analysis and Design Using UML

Module 4

 Creating Use Case Scenarios
and Forms

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 2 of 31

Objectives

Upon completion of this module, you should be able to:

• Identify and document scenarios for a use case
• Create a Use Case form describing a summary of the

scenarios in the main and alternate flows
• Describe how to reference included and extending use

cases.
• Identify and document non-functional requirements

(NFRs), business rules, risks, and priorities for a use
case

• Identify the purpose of a Supplementary Specification
Document

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

4,
 s

lid
e

3
o

f 3
1

P
ro

ce
ss

 M
ap

S
ta

ke
h

ol
de

rs
M

en
ta

l M
o

de
l

R
eq

u
ire

m
en

ts
M

o
de

l
S

ol
ut

io
n

M
o

de
l

C
od

e

A
rc

hi
te

ct
u

re
M

od
e

l

D
es

ig
n

M
o

de
l

FR
s

N
FR

s

D
is

co
ve

r
U

se
 C

as
e

sc
en

ar
io

s

C
re

at
e

U
se

 C
as

e
F

or
m

s

C
re

at
e

G
lo

ss
ar

y
of

 T
er

m
s

an
d

S
up

pl
em

en
ta

ry
 S

pe
ci

fic
at

io
n

D
oc

um
en

t

S
ta

ke
ho

ld
er

s’
M

e
nt

a
l M

od
el

s

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 4 of 31

Recording Use Case Scenarios

A Use Case scenario is a concrete example of a use case.

A Use Case scenario should:

• Be as specific as possible
• Never contain conditional statements
• Begin the same way but have different outcomes
• Not specify too many user interface details
• Show successful as well as unsuccessful outcomes (in

different scenarios)

Use Case scenarios drive several other OOAD workflows.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 5 of 31

Selecting Use Case Scenarios

While it is ideal to have multiple scenarios for all use cases,
doing so would take a lot of time. Therefore, you can select
appropriate scenarios by the following criteria:

• The use case involves a complex interaction with the
actor.

• The use case has several potential failure points, such
as interaction with external systems or a database.

There are two types of scenarios:

• Primary (Happy) scenarios record successful results.
• Secondary (Sad) scenarios record failure events.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 6 of 31

Writing a Use Case Scenario

A Use Case scenario is a story that:

• Describes how an actor uses the system and how the
system responds to the actions of the actor.

• Has a beginning, a middle, and an end.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 7 of 31

Primary Use Case Scenario: Example

The beginning:

The use case begins when the booking agent receives a request
to make a reservation for rooms in the hotel.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 8 of 31

Primary Use Case Scenario: Example

The middle:

The booking agent enters the arrival date, the departure date,
and the quantity of each type of room that is required. The
booking agent then submits the entered details. The system
finds rooms that will be available during the period of the
reservation and allocates the required number and type of
rooms from the available rooms. The system responds that the
specified rooms are available, returns the provisional
reservation number,and marks the reservation as “held”. The
booking agent accepts the rooms offered.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 9 of 31

Primary Use Case Scenario: Example

More of the middle:

The booking agent selects that the customer has visited one of
the hotels in this group before, and enters the zip code and
customer name. The system finds and returns a list of matching
customers with full address details. The booking agent selects
one of the customers as being the valid customer. The system
assigns this customer to the reservation. The booking agent
performs a payment guarantee check. This check is successful.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 10 of 31

Primary Use Case Scenario: Example

The end:

The system assigns the payment guarantee to the reservation
and changes the state of the reservation to “confirmed”. The
system returns the reservation ID and booking details.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 11 of 31

Secondary Use Case Scenario: Example

The beginning:

The use case begins when the booking agent receives a request
to make a reservation for rooms in the hotel.

The middle:

The booking agent enters the arrival date, the departure date,
and the quantity ofeach type ofroom thatis required.The
booking agentthen submits the entered details. The system
responds that there are no rooms available of any type for the
date range specified in the request.

The end:

The use case ends.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 12 of 31

Supplementary Specifications

Some of the project information that you gather cannot be
stored with the use cases because this information needs to be
shared by several use cases.

This additional information can be documented in a
Supplementary Specification Document, which often
contains:

• NFRs
• Project Risks
• Project Constraints
• Glossary of Terms

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 13 of 31

Non-Functional Requirements (NFRs)

• Non-functional requirements (NFRs) define the
qualitative characteristics of the system. As in an
animal, the NFRs describe strength, speed, and agility
of the internal features of the animal. How fast can the
animal move? How much weight can the animal carry?

• Any adverbial phrase can be an NFR.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 14 of 31

NFRs: Examples

• NFR1: The system must support 200 simultaneous users
in the Web application.

• NFR2: The process for completing any reservation
activity must take the average user no more than 10
minutes to finish.

• NFR3: The capacity of reservation records could grow to
2,600 per month.

• NFR4: The Web access should use the HTTPS transport
layer when critical customer information is being
communicated.

• NFR5: The numerical accuracy of all financial calculations
(for example, reports and customer receipts) should
follow a 2-significant-digit precision with standard
rounding of intermediate results.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 15 of 31

NFRs: Examples

• NFR6: The System must be available “7 by 24 by 365”.
However, the applications can be shut down for
maintenance once a week for one hour. This maintenance
activity should be scheduled between 3 a.m. and 6 a.m.

• NFR7: Based on historical evidence, there are
approximately 600 reservations per month per property.

• NFR8: The search for available rooms must take no longer
than 30 seconds.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 16 of 31

Glossary of Terms

The Glossary of Terms defines business or IT terms that will
be used in the project.

This is a living document, which should be appended with
new terms, or amended if a term is found to be incorrect or
needs redefinition.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 17 of 31

Glossary of Terms: Examples

Term Definition

Reservation An allocation of a specific number of rooms, each of a
specified room type, for a specified period of days.

Date Range Specifies a start date and an end date.

Room A resource that can be allocated to a reservation, and is
occupied by that reservation customer and their guests for the
date range of the reservation. A room is identified by either a
room name or a room number. Each room is assigned a room type.

Payment
Guarantee

Debit/Credit card pre-authorization or purchase order from
either corporate companies or travel agents.

Basic Rate The per day price for a room type without any additional in-
line charges or promotions.

Room Type A room type indicates the number of beds, basic rate, and
configuration of the room.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 18 of 31

Description of a Use Case Form

A Use Case form provides a tool to record the detailed
analysis of a single use case and its scenarios.

Form Element Description
Use Case Name The name of the use case from the Use Case diagram.

Description A one-line or two-line description of the purpose of the use
case.

Actors This element should list all relevant actors that are permitted
to use this use case.

Priority This is used to describe the relative priority of this use case.
Priority is often in the form of MuSCoW prioritization, which
is Must have, Should have, Could have, or Won’t have.

Risk A High, Medium, or Low ranking of this use case’s risk
factors.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 19 of 31

Description of a Use Case Form

Form Element Description

Pre-conditions and
assumptions

The conditions that must be true. If these conditions are
not true, the outcome of the use case cannot be predicted.

Extension Points A list of any extension points used by this use case.

Extends A list of any use cases that this use case extends.

Trigger The condition that “informs” the actor that the use case
should be invoked.

Flow of Events The primary trace of user actions and events that
constitute this use case.

Alternate Flows Any and all secondary traces of user actions and events
that are possible in this use case.

Post-conditions The conditions that shall exist after the use case has been
completed.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 20 of 31

Description of a Use Case Form

Form Element Description

Business Rules A list of business rules that must be complied with and
that are related to this use case. These rules might be
referred to during the execution of the use case in the
main flow and the alternate flow, but this is not always
necessary. You can describe these rules in this form.
Alternatively, you can refer to the list in the
Supplementary Specification Document.

Non-Functional
Requirements

A list of the NFRs that are related to this use case. You can
either summarize the NFRs or list their codes from the
Supplementary Specification Document.

Notes Any other information that can be of value regarding this
use case.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 21 of 31

Description of a Use Case Form

Some methodologies recommend more or less analysis of the
use cases. The Analysis workflow presented in this module
tends to be more detailed.

Use Case forms are not standard. There are different styles
that can be used to create a Use Case form.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 22 of 31

Creating a Use Case Form

Steps to determine the information for the Use Case form:

1. Determine a brief description from the primary scenarios.
2. Determine the actors who initiate and participate in this

use case from the Use Case diagrams.
3. Determine the priority of this use case from discussions

with the stakeholders.
4. Determine the risk from scenarios and from discussions

with the stakeholders.
5. Determine the extension points from the Use Case

diagrams.
6. Determine the pre-conditions from the scenarios.
7. Determine the trigger from the scenarios.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 23 of 31

Creating a Use Case Form

8. Determine the flow of events from the primary (happy)
scenarios.

9. Determine the alternate flows from the secondary (sad)
scenarios.

10. Determine the business rules from scenarios and from
discussions with stakeholders.

11. Determine the post-conditions.
12. Determine the new NFRs from discussions with

stakeholders.
13. Add notes for information—gathered from discussions

with stakeholders—that does not fit into the standard
sections of the form.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 24 of 31

Fill in Values for the Use Case Form

Fill in elements derived from stakeholders and previous
artifacts

Form Element Description

Use Case Name Create Reservation

Description The Customer requests a reservation for hotel rooms for a
date range. If all the requested rooms are available, the
price is calculated and offered to the Customer. If details
of the customer and a payment guarantee are provided,
the reservation will be confirmed to the Customer.

Actor(s) Primary: Booking Agent, Online Booker, Travel Agent
System
Secondary: None
Note: Primary actors are proxies for the Customer.

Priority Must have: Essential to this system

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 25 of 31

Fill in Values for the Use Case Form

Risk High: Primarily because of the complexity of identifying
if rooms are available and the number of different actor
roles that can use this use case.

Trigger A Customer wishes to make a reservation in the hotel.

Pre-conditions At least one room exists in the hotel.
Primary Actor can be identified.

Post-conditions One reservation is added.
Payment guarantee details are recorded.

Non-Functional
Requirements

NFR1 (Simultaneous Users)
NFR2 (Duration of Use Case)
NFR4 (Web Security)
NFR6 (System Availability)
NFR8 (Max Time for Room Availability Search)

Notes A fast method of checking room availability is still under
investigation.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 26 of 31

Fill in Values for the Main Flow of Events

Flow of Events 1: Use case starts when Customer requests to create a
reservation
2: Customer enters types of rooms, arrival date, and departure
date [A1] [A2]
2.1: System creates a reservation and reserves rooms applying
BR3 [A3]
2.3: System calculates quoted price applying BR4
2.3.1 System records quoted price
2.4: System notifies Customer of reservation details (including
rooms and price)
3: Customer accepts rooms offered [A5]
3.1: Extension Point (new customer) [A6]
3.2: Extension Point (payment guarantee) [A7]
3.3: System changes reservation status to “confirmed”
3.4: System notifies Customer of confirmed reservation details
4: Use case ends

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 27 of 31

Fill in Values for the Alternate Flow of
Events

Determine the alternate flows from the secondary scenarios
and remaining primary scenarios:

• Perform a difference analysis between the scenario used
for the main flow and each of the other scenarios (in
turn).

• The alternate flows are the steps that are different
between the scenario used for the main flow and each
of the other scenarios.

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 28 of 31

Fill in Values for the Alternate Flow of
Events

Alternate Flows A1: Customer can enter duration instead of departure
date, go to step 2.1 [A2]
A2: Failed date check BR1. Notify error to Customer, go
to step 2
A3: Complying with BR2, System determines that
required rooms are not available, System upgrades one or
more room types, go to step 2.1[A4]
A4: No further upgrades available. Notify message to
Customer, go to step 2
A5: Rooms offered are declined, go to step A9
A6: Customer already exists, Customer enters customer
name and zip code, System searches for matching
customers, notifies Customer of matching customers,
Customer selects correct customer details, go to step 3.2
[A8]

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 29 of 31

Fill in Values for the Alternate Flow of
Events

Alternate Flows
(continued)

A7: Payment guarantee fails. Notify message to
Customer, go to step 3.2
A8: Existing customer not found, go to step 3.1
A9: Reservation not confirmed, reservation deleted, use
case ends
At any time: Customer may cancel the use case, use case
ends [A9]
After use case inactivity of 10 minutes: use case ends [A9]

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 30 of 31

Fill in Values for the Business Rules

Business Rules
(BR)

BR1: The arrival date must not be before today's date, and
the departure date must be after the arrival date
BR2: Overbooking is not allowed
BR3: Reservations with assigned rooms but no payment
guarantee have a status of “held”
BR4: The quoted price is the sum of the base price of the
room types after applying BR5 and BR6
BR5: Seasonal Adjustment can be applied if reservation
dates are applicable
BR6: Offer adjustments can be applied if reservation
qualifies
BR7: Reservations with “held” status can be deleted
BR8: Reservations with a status of “confirmed” must be
linked to a payment guarantee and a customer
BR9: Reservation must not exist without being linked to
at least one room

Summer School

Object-Oriented Analysis and Design Using UML Module 4, slide 31 of 31

Summary

• A Use Case scenario is written to provide a detailed
description of the activities involved in one instance of
the use case.

• Use Case scenarios should provide as many different
situations as possible so that the whole range of
activities for that use case are documented.

• Use Case scenarios provide much detail about a use
case. An analysis of this detail is recorded in the Use
Case form.

• The activities of a use case are distilled into Flow of
Events portion of the Use Case form. Alternate flows
are identified from unusual situations in one or more
scenarios.

Summer School

Object-Oriented Analysis and Design Using UML

Module 5

 Creating Activity Diagrams

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 2 of 22

Objectives

Upon completion of this module, you should be able to:

• Identify the essential elements of an Activity diagram
• Model a Use Case flow of events using an Activity

diagram

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

5,
 s

lid
e

3
o

f 2
2

P
ro

ce
ss

 M
ap

S
ta

ke
h

ol
d

er
s

M
en

ta
l M

od
e

l

R
eq

ui
re

m
en

ts
M

o
de

l
S

ol
ut

io
n

M
o

de
l

C
od

e

A
rc

h
ite

ct
ur

e
M

o
de

l

D
es

ig
n

M
o

de
l

FR
s

N
FR

s

S
ta

ke
ho

ld
er

s
M

e
nt

a
l M

od
el

s

C
re

at
in

g
A

ct
iv

ity
D

ia
gr

am
s

U
se

 C
as

e
F

or
m

s
S

up
p

l.
S

pe
c.

S
ce

n
ar

io
s

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 4 of 22

Describing a Use Case With an Activity
Diagram

To verify a mental model of a Use Case you can:

• Model the flow of events of an Use Case in an Activity
diagram

• Validate the Use Case by reviewing the Activity
diagram with the stakeholders

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 5 of 22

Identifying the Elements of an Activity
Diagram

An Activity diagram is composed of the following elements:

Activity

Guard condition

Start node

Flow of activity

Branch node

Merge node

Stop node

[no customer]

[else]

retrieve customer

make new customer

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 6 of 22

Identifying Elements of an Activity Diagram

An example of concurrent activities:

Fork bar

Join bar

enter name enter address enter phone number

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 7 of 22

Activities And Actions

Activities and actions are processes taken by the system or an
actor.

• Activity nodes and action nodes use the same notation
in UML

• An activity can be divided into other activities or
actions

• An action is an activity node which cannot be divided
within the context of the current view.

• A primitive form of action results in a change in the
state of the system or the return of a value.

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 8 of 22

Flow of Control

An Activity diagram must start with a Start node and end
with a Stop node. Flow of control is indicated by the arrows
that link the activities together.

first activity

second activity

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 9 of 22

Branching

The branch and merge nodes represent conditional flows of
activity.

• A branch node has two or more outflows, with Boolean
predicates to indicate the selection condition.

• A merge node collapses conditional branches.

[no customer found]

[customer found]

retrieve customer

make new customer

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 10 of 22

Iteration

Iteration can be achieved using branch nodes.

[it.hasNext()]

[else]

it.next().doSomething();

Iterator it = ...

While-Do Loop

[it.hasNext()]

[else]

it.next().doSomething();

Iterator it = ...

Do-While Loop

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 11 of 22

Concurrent Flow of Control

The fork and join bars indicate concurrent flow of control.

• Fork and join bars can represent either threaded
activities or parallel user activities.

• The multiplicity indicator specifies how many of the
parallel activities must have been processed.

enter name enter address enter phone number

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 12 of 22

Passing an Object between Actions

An Activity diagram can show objects being passed between
actions

• A pin is a connection point of an action for object input
or output

• The name of the pin denotes the object being passed

ship order

process order

receive order

order
[received]

order
[processed]

order
[shipped]

order

order

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 13 of 22

Partitions in Activity Diagrams

An Activity diagram can show objects grouped into partitions
(formerly called swimlanes)

Partitions can be vertical, horizontal or both

ship order

process order

receive order

order
[received]

order
[processed]

order
[shipped]

order

order

Sales Manufacture Order Dispatch

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 14 of 22

Signals in Activity Diagrams

An Activity diagram can show the receiving and sending of
signals.

• An Accept Event Action element or an Accept Time
Event element is used to show the receiving of a signal

• A Send Event Action element is used to show the
sending of a signal

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 15 of 22

Displaying Signals in Activity Diagrams

Present Order Details
for Confirmation

Process Order

Accept
Order

After 10 mins

Cancel Order

Raise Invoice

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 16 of 22

Interruptible Activity Regions

An Activity diagram can show a sub set of activities that can
be interrupted by an event.

cancel order

process order

receive order cancel

ship order

cancel order region

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 17 of 22

Creating an Activity Diagram for a Use Case

Analyze the flow of events field in the Use Case form:

• Identify activities
• Identify branching and looping
• Identify concurrent activities

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 18 of 22

Creating Activity Diagrams – Example 1

• The following slide illustrates a simple sequence of
activities for a part of the Create Reservation Use Case.

• The diagram shows the activities involved in
identifying the customer:
• by either delegating the entry of the new customer

details to the extension point (New Customer)
• or by the actor entering a subset of customer

information in order to find the existing customer
• If no existing customer is found then the extension

point (New Customer) is used.

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 19 of 22

Creating Activity Diagrams – Example 1

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 20 of 22

Creating Activity Diagrams – Example 2

The following slide shows an Activity diagram that
represents the main flow path and the alternate flow path of
the Create Reservation Use Case Form.

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 21 of 22

Creating Activity Diagrams – Example 2

Summer School

Object-Oriented Analysis and Design Using UML Module 5, slide 22 of 22

Summary

In this module you identified:

• The essential elements of an Activity diagram
• How to visually represent the flow of events of a Use

Case with an Activity diagram

Summer School

Object-Oriented Analysis and Design Using UML

Module 6

 Determining the Key Abstractions

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 2 of 27

Objectives

Upon completion of this module, you should be able to:

• Identify a set of candidate key abstractions
• Identify the key abstractions using CRC analysis

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

6,
 s

lid
e

3
o

f 2
7

P
ro

ce
ss

 M
ap

S
ta

ke
h

ol
de

rs
M

en
ta

l M
od

el

R
e

qu
ire

m
e

nt
s

M
o

de
l

S
ol

u
tio

n
M

o
de

l
C

od
e

A
rc

hi
te

ct
ur

e
M

o
de

l

D
es

ig
n

M
o

de
l

FR
s

N
FR

s

S
ta

ke
h

ol
de

rs
M

e
nt

a
l M

od
el

s

D
et

er
m

in
e

th
e

ke
y

ab
st

ra
ct

io
ns

us
in

g
C

R
C

 a
na

ly
si

s.

C
R

C

C
R

C

C
R

C

U
se

 C
as

e
 F

o
rm

s
S

u
pp

l.
S

pe
c.

S
ce

n
ar

io
s

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 4 of 27

Introducing Key Abstractions

“A key abstraction is a class or object that forms part of the
vocabulary of the problem domain.” (Booch OOAD page 162)

Represents the primary objects within the system. Finding
key abstractions is a process of discovery.

1. Identify all candidate key abstractions by listing all
nouns from the project artifacts in a “Candidate Key
Abstractions Form.”

2. Use CRC analysis to determine the essential set of
key abstractions.
Key abstractions are recognized as objects that have
responsibilities and are used by other objects (the
collaborators).

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 5 of 27

Identifying Candidate Key Abstractions

Begin the process of identifying all of the unique nouns in the
project artifacts by focusing on the following areas in these
documents:

• The Main Flow and Alternate Flow sections of the use
case forms

• The other sections of the use case forms
• The use case scenarios
• The Glossary of terms
• The Supplementary Specification document.

Tip: With practice you will be able to skip some of the nouns
that are obviously not part of the domain.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 6 of 27

Identifying the Candidate Abstractions

Here are a few excerpts from the Hotel System artifacts with
the nouns marked in bold:

• From the Create Reservation Use Case Form
Description Section:
The Customer requests a reservation for hotel rooms
for a date range. If all the requested rooms are
available, the price is calculated and offered to the
Customer. If details of the customer and a payment
guarantee are provided, the reservation will be
confirmed to the Customer.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 7 of 27

Identifying the Candidate Abstractions

• From the Create Reservation Use Case Form Main Flow
Section:
Customer enters types of rooms, arrival date, and
departure date
Systems creates a reservation and reserves rooms
System calculates quoted price
System records quoted price
System notifies Customer of reservation details
(including rooms and price)
Customer accepts rooms offered
Extension Point (new customer)
Extension Point (payment guarantee)
System changes reservation status to “confirmed”
System notifies Customer of confirmed reservation
details

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 8 of 27

Identifying the Candidate Abstractions

• From the Create Reservation Use Case Form Alternate Flow
Section:
Customer can enter duration instead of departure date
Failed date check BR1. Notify error to Customer
Complying with BR2, System determines that required
rooms are not available
System upgrades one or more room types
No further upgrades available. Notify message to Customer
Rooms offered are declined
Customer already exists, Customer enters customer name &
zip code
System searches for matching customers, notifies
Customer of matching customers, Customer selects correct
customer details
Payment guarantee fails. Notify message to Customer
Existing customer not found
Reservation not confirmed, reservation deleted

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 9 of 27

Identifying the Candidate Abstractions

• From the Create Reservation Use Case Form Business
Rules Section:
The arrival date must not be before today's date, and
the departure date must be after the arrival date
Reservations with assigned rooms but no payment
guarantee have a status of “held”
Reservations with a status of “confirmed” must be
linked to a payment guarantee and a customer
Reservation must not exist without being linked to
at least one room

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 10 of 27

Identifying the Candidate Abstractions

• From the Create Reservation Use Case Form
Remaining Sections:
...

• From the Supplementary Specification Documents. For
example the Project Glossary:
Reservation: An allocation of a specific number of
rooms, each of a specified room type, for a specified
period of days.

Date Range: Specifies a start date and an end date

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 11 of 27

Candidate Key Abstractions Form

The form for recording candidate key abstractions uses three
fields:

• Candidate Key Abstraction – This field contains a noun
discovered from the project artifacts.

• Reason For Elimination – This field is left blank if the
candidate becomes a key abstraction. Otherwise, this
field contains the reason why the candidate was
rejected.

• Selected Name – This field contains the name of the
class if this entry is selected as a key abstraction.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 12 of 27

Candidate Key Abstractions Form
(Example)

Candidate Key
Abstraction

Reason for
Elimination

Selected
Component Name

Reservation

Customer actor

System

Customer

Room

Date Range

Price

Customer Details

...

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 13 of 27

Project Glossary

The process of identifying candidate key abstractions is also a
good opportunity to verify that your project glossary is
up-to-date.

• Verify that all domain-specific terms have been listed
and defined.

• Identify synonyms in the project glossary and select a
primary term to use throughout the documentation
and source code.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 14 of 27

Discovering Key Abstractions Using CRC
Analysis

After you have a complete list of candidate key abstractions,
you need to filter this list. One technique is CRC analysis:

1. Select one candidate key abstraction.
2. Identify a use case in which this candidate is

prominent.
3. Scan the use case forms, use case scenarios to

determine responsibilities and collaborators.
4. Scan the Glossary for all references to the noun.
5. Document this key abstraction with a CRC card.
6. Update Candidate Key Abstractions Form based on

findings.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 15 of 27

Selecting a Key Abstraction Candidate

Selecting a good key abstraction candidate is largely intuition,
but here are a few tactics:

• Ask a domain expert.
• Choose a candidate key abstraction that is used in a use

case name.
• Choose a candidate key abstraction that is used in a use

case form.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 16 of 27

Selecting a Key Abstraction Candidate

The noun “reservation” appears many times in the following
areas:

• In the following use case names:
• Create Reservation
• Update Reservation
• Delete Reservation

• In many places throughout the use case forms. For
example, the Check In Customer Use Case Form will
describe assigning a bill to a Reservation

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 17 of 27

Identifying a Relevant Use Case

To determine whether the candidate key abstraction is a real
key abstraction, you must determine if the candidate has any
responsibilities and collaborators.

To identify a use case that might declare a candidate’s
responsibilities and collaborators:

1. Scan the use case names for the candidate key
abstraction.

2. Scan the use case forms for the candidate key
abstraction.

3. Scan the use case scenarios for the candidate key
abstraction.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 18 of 27

Identifying a Relevant Use Case - Contd.

4. Scan the text of the use case scenarios to see if the
candidate key abstraction is mentioned.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 19 of 27

Identifying a Relevant Use Case

As mentioned previously, there are three use cases that focus
on the reservation key abstraction:

• Create Reservation
• Update Reservation
• Delete Reservation

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 20 of 27

Determining Responsibilities and
Collaborators

Scan the scenarios and use case forms of the identified use
cases for responsibilities (operations and attributes) of the
candidate key abstraction and the objects with which it must
collaborate.

If you cannot find any responsibilities, then you can reject this
candidate.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 21 of 27

Determining Responsibilities and
Collaborators

Following are a few relevant artifacts:

• Glossary Term, Reservation: An allocation of a specific
number of rooms, each of a specified room type, for a
specified period of days

• Business Rule BR9: Reservation must not exist without
being linked to at least one room

• Business Rule BR8: Reservations with a status of
“confirmed” must be linked to a payment guarantee
and a customer

• Main Flow 3.3: System changes reservation status to
“confirmed”

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 22 of 27

Documenting a Key Abstraction Using a
CRC Card

Class Name

Responsibilities Collaborators

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 23 of 27

Documenting a Key Abstraction Using a
CRC Card

Reserves a Room

status
(New, Held, Confirmed)

arrival date
departure date

Room
Customer

Reservation

Responsibilities Collaborators

Payment Guarantee

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 24 of 27

Updating the Candidate Key Abstractions
Form

• If the candidate you selected has responsibilities, then
enter the name of the key abstraction (from the CRC
card) into the “Selected Name” field.

• Otherwise, enter an explanation why the candidate
was not selected as a key abstraction.

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 25 of 27

Updating the Candidate Key Abstractions
Form

Candidate Key
Abstraction

Eliminated for the
Following Reason

Selected Component
Name

Reservation Reservation

Customer actor External to the system

System The whole system

Customer Customer

Rooms Room

Date Range A synonym for Arr. and
Dept. Date

Price A synonym for Quoted
Price

Customer Details Same as Customer

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 26 of 27

Updating the Candidate Key Abstractions
Form

Candidate Key
Abstraction

Eliminated for the
Following Reason

Selected Component
Name

Payment Guarantee Payment Guarantee

Room Type RoomType

Arrival Date Attribute of Reservation

Departure Date Attribute of Reservation

Quoted Price Attribute of Reservation

Reservation Details Same as Reservation

Customer Name Attribute of Customer

Customer Zip Code Attribute of Customer

Today Date External to the system

Period of Days A synonym for Duration

Summer School

Object-Oriented Analysis and Design Using UML Module 6, slide 27 of 27

Summary

• Key abstractions are the essential nouns in the
language of the problem domain.

• To identify the key abstractions:
a. List all (problem domain) nouns from the project

analysis artifacts, in a Candidate Key Abstractions
Form.

b. Use CRC analysis to identify the key abstractions
(a class with responsibilities and collaborators)
from the candidate list.

Summer School

Object-Oriented Analysis and Design Using UML

Module 7

Constructing the Problem Domain Model

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 2 of 31

Objectives

Upon completion of this module, you should be able to:

• Identify the essential elements in a UML Class diagram
• Construct a Domain model using a Class diagram
• Identify the essential elements in a UML Object

diagram
• Validate the Domain model with one or more Object

diagrams

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

7,
 s

lid
e

3
o

f 3
1

P
ro

ce
ss

 M
ap

S
ta

ke
ho

ld
er

s
M

e
nt

a
l M

o
de

l

R
eq

u
ire

m
en

ts
M

od
el

S
ol

ut
io

n
M

od
el

C
o

de

A
rc

hi
te

ct
ur

e
M

od
el

D
e

si
gn

M
od

el
FR

s

N
FR

s

R
ep

re
se

nt
 th

e
re

la
tio

ns
hi

ps
 o

f t
he

ke
y

ab
st

ra
ct

io
ns

 in
 a

 D
om

ai
n

m
od

el
.

V
er

ify
 th

e
D

om
ai

n
m

od
el

 u
si

ng
O

bj
ec

t d
ia

gr
am

s
fr

om
 U

C
 s

ce
na

rio
s.

D
et

er
m

in
e

th
e

ke
y

ab
st

ra
ct

io
ns

us
in

g
C

R
C

 a
na

ly
si

s.

C
R

C

C
R

C

C
R

C

A
rt

ifa
ct

s
in

cl
u

de
:

U
se

 C
a

se
 fo

rm
S

ce
na

rio
s

S
u

pp
. S

pe
c.

 D
o

c.
U

se
 C

as
e

d
ia

gr
am

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 4 of 31

Introducing the Domain Model

Domain model – “The sea of classes in a system that serves to
capture the vocabulary of the problem space;also known as a
conceptual model.” (Booch Object Solutions page 304)

• The classes in the Domain model are the system’s key
abstractions.

• The Domain model shows relationships (collaborators)
between the key abstractions.

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 5 of 31

Identifying the Elements of a Class Diagram

A UML Class diagram is composed of the following elements:

Reservation

Customer
1

1..*

1..*

0..*

customer

room
Room

Class node

Role nameAssociation Association name

Multiplicity Multiplicity

made for

reserved resource

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 6 of 31

Class Nodes

Class nodes represent classes of objects within the model.

These can represent:

• Conceptual entities, such as key abstractions
• Real software components

A stereotype can help identify the type of the class node.

Customer Customer
«entity»

Customer
Customer

Class stereotype

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 7 of 31

Class Node Compartments

• The name compartment records the name of the class.
• The attributes compartment records attributes (or

instance variables) of the class.
• The operations compartment records operations (or

methods) of the class.
• Additional compartments may be added.

Reservation
Name compartment

Attributes compartment

Operations compartment

reservation number
status
arrival date
departure date

«operations»
reserve a room

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 8 of 31

Associations

Associations represent relationships between classes.
Associations are manifested at runtime, but these models
represent all possible runtime arrangements between objects.

Relationship and Roles

This association would be read as “A reservation is made for
a customer.”

Reservation Customer
resv cust

made for

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 9 of 31

Multiplicity

Multiplicity determines how many objects might participate
in the relationship.

For example:

This association would be read as “A reservation is made for
one and only one customer.” Reading it in the other direction
is “A customer can make one or more reservations.”

1..* 1
Reservation Customer

resv cust

made for

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 10 of 31

Navigation

Navigation arrows on the association determine what
direction an association can be traversed at runtime.

For example:

This association would be read as “From a reservation the
system can directly retrieve the room, and from a room the
system cannot directly retrieve the reservation for that room.”

Reservation Room

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 11 of 31

Association Classes

Sometimes information is included in the association between
two classes. For example:

Employment is an association class that records the
employment details for each term of employment between a
person and an employer.

Employment

Start Date
End Date
Final Salary

0..* 1..*
Employer Person

works for

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 12 of 31

Creating a Domain Model

Starting with the key abstractions, you can create a Domain
model using these steps:

1. Draw a class node for each key abstraction, and:
a. List known attributes.
b. List known operations.

2. Draw associations between collaborating classes.
3. Identify and document relationship and role names.
4. Identify and document association multiplicity.
5. Optionally, identify and document association

navigation.

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 13 of 31

Step 1 – Draw the Class Nodes

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operations>>
reserve a room

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 14 of 31

Step 2 – Draw the Associations

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operation>>
reserve a room

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 15 of 31

Step 3 – Label the Associations and Role
Names

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operations>>
reserve a room

made for
resv cust

resv

room located at
room property

guaranteed by

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 16 of 31

Step 4 – Label the Association Multiplicity

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operations>>
reserve a room

1..* 1made for
resv cust

1..*
resv

room

1

1

1
1..* 1located at
room property

guaranteed by

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 17 of 31

Step 5 – Draw the Navigation Arrows

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operations>>
reserve a room

1..* 1made for
resv cust

1..*
resv

room

1

1

1
1..* 1located at
room property

guaranteed by

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 18 of 31

Validating the Domain Model (Intro)

You can validate the Domain model by analyzing multiple
Object diagrams based on use case scenarios.

First, the essential elements of Object diagrams are presented.

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 19 of 31

Identifying the Elements of an Object
Diagram

A static object diagram is an instance of a class diagram; it shows
a snapshot of the detailed state of a system at a point in time.
[UML specv1.4, page 3-35]

:Reservation

:Customer

:Room

Object node

Link

Link name

made for

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 20 of 31

Object Nodes

An object node includes some form of name and data type:

An object node might also include attributes:

Victoria

Object name without type

:Room Blue:Room

Type without a name Type with a name

:Customer

first name = "Jane"
last name = "Googol"
address = "2 Main St, ..."
phone number = "999-555-4747"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 21 of 31

Links

In Object diagrams each link is unique and is one-to-one with
respect to the participants.

For example:

:Reservation

:Customer

Victoria:Room

Blue:Room

Queen:Room

:Property

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 22 of 31

Validating the Domain Model Using Object
Diagrams

1. Pick one or more use cases that exercise the Domain
model.

2. Pick one or more use case scenarios for the selected
use cases.

3. Walk through each scenario (separately), and
construct the objects (with data) mentioned in the
scenario.

4. Compare each Object diagram against the Domain
model to see if any association constraints are
violated.

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 23 of 31

Step 1 – Create Reservation Scenario 1

The use case begins when the booking agent receives a request
to make a reservation for rooms in the hotel. The booking agent
enters the arrival date, the departure date, and the quantity of
each type of room that is required.

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 24 of 31

Step 2 – Create Reservation Scenario 1

The booking agent then submits the entered details. The system
finds rooms thatwill be available during the period ofthe
reservation.

:Reservation

reservation number = 4774
status = NEW
arrival date = 31-Dec-2002
departure date = 5-Jan-2003

Victoria:Room

Blue:Room

Queen:Room

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 25 of 31

Step 3 – Create Reservation Scenario 1

The system allocates the required number and type of rooms
from the availablerooms. The system respondsthat the
specified rooms are available, returns the provisional
reservation number, and marks the reservation as “held”.

:Reservation

reservation number = 4774
status = HELD
arrival date = 31-Dec-2002
departure date = 5-Jan-2003

Victoria:Room

Blue:Room

Queen:Room

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 26 of 31

Step 4 – Create Reservation Scenario 1

The booking agent accepts the rooms offered. The booking agent
selects that the customer has visited one of the hotels in this
group before, and enters the zip code and customer name. The
system finds and returns a list of matching customers with full
address details. The booking agent selects one of the customers
as being the valid customer. The system assigns this customer to
the reservation.

:Reservation

reservation number = 4774
status = HELD
arrival date = 31-Dec-2002
departure date = 5-Jan-2003

first name = "Jane"
last name = "Googol"
address = "2 Main St, ..."
phone number = "999-555-4774"

:Customer

Victoria:Room

Blue:Room

Queen:Room

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 27 of 31

Step 5 – Create Reservation Scenario 1

The booking agent performs a payment guarantee check.This
check is successful. The system assigns the payment guarantee
to the reservation and changes the state of the reservation to
“confirmed”.The system returnsthe reservation ID and
booking details.

:Reservation

reservation number = 4774
status = CONFIRMED
arrival date = 31-Dec-2002
departure date = 5-Jan-2003

:Payment Guarantee

:Customer

Victoria:Room

Blue:Room

Queen:Room

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 28 of 31

Create Reservation Scenario No. 2

Another “Create a Reservation” scenario has the Actor
making a reservation for a small family reunion in which
three rooms are booked:

:Reservation

reservation number = 4775
status = CONFIRMED
arrival date = 1-July-2002
departure date = 6-July-2003

VISA:Payment Guarantee

JaneGoogol:Customer

Victoria:Room

Blue:Room

Queen:Room

:Property

name="Santa Cruz"

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 29 of 31

Comparing Object Diagrams to Validating
the Domain Model

To validate the Domain model, compare the Class diagram
with the scenario Object diagrams.

• Are there attributes or responsibilities mentioned in a
scenario that are not listed in the Domain model?

• Are there associations in the Object diagrams that do
not exist in the Domain model?

• Are there scenarios in which the multiplicity of a
relationship is wrong?

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 30 of 31

Revised Domain Model for the Hotel
Reservation System

Reservation

reservation number
status
arrival date
departure date

Customer

Room

Payment
Guarantee

Property

first name
last name
address
phone number

<<operations>>
reserve a room

1..* 1made for
resv cust

1..*
resv

room

1

1

1..*
1..* 1located at
room property

guaranteed by

Summer School

Object-Oriented Analysis and Design Using UML Module 7, slide 31 of 31

Summary

• Use the Domain model to provide a static view of the
key abstractions for the problem domain.

• Use the UML Class diagrams to represent the Domain
model.

• Validate the Domain model by creating Object
diagrams from use case scenarios to see if the network
of objects fits the association constraints specified by
the Domain model.

Summer School

Object-Oriented Analysis and Design Using UML

Module 8

 Transitioning from Analysis to Design
Using Interaction Diagrams

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 2 of 38

Objectives

• Explain the purpose and elements of the Design model
• Identify the essential elements of a UML

Communication diagram
• Create a Communication diagram view of the Design

model
• Identify the essential elements of a UML Sequence

diagram
• Create a Sequence diagram view of the Design model

S
u

m
m

e
r

S
ch

oo
l

O
b

je
ct

-O
ri

e
n
te

d
 A

n
a
ly

si
s

a
n
d

 D
e
si

g
n

 U
si

n
g
 U

M
L

M
od

ul
e

8,
 s

lid
e

3
o

f 3
8

P
ro

ce
ss

 M
ap

S
ta

ke
ho

ld
er

s
M

en
ta

l M
od

el

R
eq

ui
re

m
e

nt
s

M
o

de
l

S
ol

u
tio

n
M

o
de

l
C

od
e

A
rc

hi
te

ct
ur

e
M

o
de

l

D
es

ig
n

M
od

el
FR

s

N
FR

s

C
re

at
e

 In
te

ra
ct

io
n

 d
ia

g
ra

m
s

fo
r

ke
y

us
e

ca
se

 s
ce

n
ar

io
s

A
rt

ifa
ct

s
in

cl
ud

e:
D

o
m

ai
n

 C
la

ss
 M

od
e

l
U

se
 C

a
se

 F
or

m
S

ce
n

ar
io

s

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 4 of 38

Introducing the Design Model

The Design model is created from the Requirements model
(use cases and Domain model).

The Design model is merged with the Architecture model to
produce the Solution model.

Stakeholders
Mental Model

Requirements
Model

Solution
Model

Code

Architecture
Model

Design
Model

NFRs

FRs

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 5 of 38

Interaction Diagrams

UML Interaction diagrams are the collective name for the
following diagrams:

• Sequence diagrams
• Communication diagrams

Formerly known as Collaboration diagrams
• Interaction Overview diagrams

A combination of Activity diagram and Sequence
diagram fragments

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 6 of 38

Interaction Diagrams

Each UML Interaction diagram is used to show the sequence
of interactions that occur between objects during:

• One or two use case scenarios
• A fragment of one use case scenario

UML Interaction diagrams may also be used to show the
sequence of interactions that occur between:

• Systems
• Subsystems

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 7 of 38

Comparing Analysis and Design

Analysis helps you model what is known about a business
process that the system must support:

• Use cases
• Domain model

Design helps you model how the system will support the
business processes. The Design model consists of:

• Boundary (UI) components
• Service components
• Entity components

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 8 of 38

Robustness Analysis

Robustness analysis is a process that assists in identifying
design components that would be required in the Design
model:

Use Case model

Domain model

Use Case Forms
and Scenarios

Requirements Model

Design Model

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 9 of 38

Robustness Analysis

Inputs to Robustness Analysis:

• A use case
• The use case scenarios for that use case
• The use case Activity diagram (if available) for that use

case
• The Domain model

Output from Robustness Analysis:

The Design model is usually captured in UML
Interaction diagrams with design components such
as Boundary, Service, and Entity components.

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 10 of 38

Boundary Components

“A boundary class (component) is used to modelinteraction
between the system and its actors (that is,users and external
systems).” (Jacobson, Booch, and Rumbaugh page 183)

• Abstractions of UI screens, sensors, communication
interfaces, and so on.

• High-level UI components.
• Every boundary component must be associated with at

least one actor.

BookingAgent
ReservationUI

roomRequest

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 11 of 38

Service Components

“Control (Service) classes (components) represent coordination,
sequencing,transactions,and controlof other objects and are
often used to encapsulate control related to a specific use case.”
(Jacobson, Booch, and Rumbaugh page 185)

• Coordinate control flow
• Isolate any changes in workflow from the boundary

and entity components

BookingAgent
ReservationUI ReservationService

makeReservationroomRequest

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 12 of 38

Entity Components

“An entity class (component) is used to model information that
is long-lived and often persistent.” (Jacobson,Booch, and
Rumbaugh page 184)

• Entities usually correspond to domain objects.
• Most entities are persistent.
• Entities can have complex behavior.

Reservation

<<create>>

BookingAgent
ReservationUI ReservationService

makeReservationroomRequest

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 13 of 38

Service and Entity Components

An Entity component will often have a corresponding Service
component

• A service object will often control its corresponding
entity object

• A service object can delegate to another service object

<<create>>
BookingAgent

ReservationUI ReservationService

makeReservationroomRequest findRooms

Reservation

RoomService

Room

setRooms
setQuotedPrice

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 14 of 38

Boundary And Entity Components

A Boundary component can often retrieve the attributes of an
Entity component

<<create>>
BookingAgent

ReservationUI ReservationService

makeReservationroomRequest findRooms

Reservation

setRooms

RoomService

Room

getDetails

setQuotedPrice

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 15 of 38

Describing the Robustness Analysis
Process

1. Select a use case.
2. Construct a Communication diagram or a Sequence

diagram that satisfies the activities of the use case.
a. Identify Design components that support the

activities of the use case.
b. Draw the associations between these components.
c. Label the associations with messages.

3. Convert the Communication diagram into a
Sequence diagram, or vice versa, for an alternate
view (optional).

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 16 of 38

Identifying the Elements of a
Communication Diagram

A UML Communication diagram is composed of the
following elements:

:ReservationService

1.1.1<<create>>

1.2.1: getReservationNumber

1.1: m
akeReservation (a

d , d
d , rt

r)

res:Reservation:ReservationUI

Message direction

Message name

Parameters

Sequence Number

Stereotype Icon
or text

1.2.1.1: reservationNumber

return object
Object node

create object
sterotype

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 17 of 38

Identifying the Elements of a
Communication Diagram

A variation of the previous Communication diagram:

:ReservationService

1.1.1<<create>>

1.2.1: getReservationNumber

1.1: m
ake

Rese
rvatio

n (a
d , d

d , r
tr

)

res:Reservation:ReservationUI

reservationNumber

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 18 of 38

Identifying the Elements of a
Communication Diagram

A message can indicate:

• A message name
• A direction arrow

• An solid arrowhead is a synchronous message
• An open arrowhead is an asynchronous message

• A sequence number describing the order of the
message

• A list of parameters passed to the receiving object
• A guard condition indicating a conditional message
• A return parameter

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 19 of 38

Creating a Communication Diagram

Select an appropriate use case.

1. Place the actor in the Communication diagram.
2. Analyze the Use Case form or the Activity diagram

for the use case.
For every action in the use case:
a. Identify and add a Boundary component.
b. Identify and add a Service component.
c. Identify and add an Entity component.
d. Identify and add further Interactions, discovering

new Methods, Boundary, Service and Entity
components.

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 20 of 38

Step 1— Place the Actor in the Diagram

Place the actor in the Communication diagram:

BookingAgent

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 21 of 38

Step 2a — Identify Boundary Components

BookingAgent makes a room request passing the arrival date
(ad), departure date (dd), requested types of room (rtr):

BookingAgent
:ReservationUI

1: roomRequest(ad,dd,rtr)

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 22 of 38

Step 2b — Identify Service Components

The ReservationUI boundary object uses ReservationService
object to make the Reservation:

BookingAgent
:ReservationUI :ReservationService

1.1: makeReservation(ad,dd,rtr)

1: roomRequest(ad,dd,rtr)

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 23 of 38

Step 2c — Identify Entity Components

The makeResevation method in the ReservationService object
creates the Reservation entity object:

:Reservation

1.1.1: <<create>>(ad,dd,rtr)

BookingAgent
:ReservationService

BookingAgent
:ReservationUI

1.1: makeReservation(ad,dd,rtr)

1: roomRequest(ad,dd,rtr)

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 24 of 38

Step 2d — Identify Additional Interactions

The makeReservation method uses the findRoom method to
find rooms of the required type. After finding and choosing
free rooms (not shown) the setRooms method assigns the
rooms to the Reservation. The calculated price (not shown) is
assigned to the Reservation:

BookingAgent
:ReservationUI :ReservationService

1.1.2: findRooms(rtr)

:Reservation

:RoomService

:Room

1.1.4: setRooms(chosenRoomList)

1.1.6: setQuotedPrice(calculatedPrice)

1: roomRequest(ad,dd,rtr)

BookingAgent

1.1: makeReservation(ad,dd,rtr)

1.1.1: <<create>>(ad,dd,rtr)

Note: Steps 1.1.2.1, 1.1.3 and
1.1.5 have been omitted

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 25 of 38

Step 2d — Identify Additional Methods

The makeReservation method of the ReservationService
object returns the Reservation object (not shown) to the
ReservationUI. The roomRequest method of ReservationUI
then calls the getReservationDetails method of the
Reservation object, which returns the details of the
reservation. These will then be notified to the booking agent
(not shown):

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 26 of 38

Step 2d — Identify Additional Methods

BookingAgent
:ReservationUI :ReservationService

1.1.2: findRooms(rtr)

:Reservation

:RoomService

:Room

1.1.4: setRooms
(chosenRoomList)

1.1.6: setQuotedPrice
(calculatedPrice)

1: roomRequest(ad,dd,rtr)

BookingAgent

1.1: makeReservation(ad,dd,rtr)

1.1.1: <<create>>
(ad,dd,rtr)

Note: Several steps have been
omitted including 1.1.2.1, 1.1.3
and 1.1.5

1.3: getReservationDetails()

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 27 of 38

Communication Diagram Examples

The following two Communication diagrams show a more
detailed view of the CreateReservation:

1. Primary (successful) scenario
2. Secondary (unsuccessful) scenario

Rooms offered are rejected by the booking agent

The finer details has been omitted, to reduce complexity.

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 28 of 38

Communication Diagram Example 1

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 29 of 38

Communication Diagram Example 2

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 30 of 38

Sequence Diagrams

Sequence diagrams:

• Provide a different perspective of the interactions
between objects

• Can be used instead of Communication diagrams
• Can be converted to or from Communication diagrams
• Prove to be more useful for developers.
• Highlight the time ordering of the interactions

The next section describes UML Sequence diagrams.

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 31 of 38

Identifying the Elements of a Sequence
Diagram

:Reservation
UI

:Reservation
Service

res
:Reservation

<<create>>

Object node

Activation bar

Implicit return

Explicit return

Message

Lifeline

getReservationNumber()

makeReservation(ad,dd,rtr)

res

reservationNumber

Time

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 32 of 38

Fragments

Sequence diagrams support a Fragment notation. The uses of
fragments include:

• Showing sequence loops
• Showing alternative paths
• Allowing two or more scenarios to be shown on one

diagram
• Showing a reference to another detailed Sequence

diagram fragment
• Allowing you to break up a large diagram into several

smaller diagrams

The following slide shows examples of the Fragment notation

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 33 of 38

Fragment Examples

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 34 of 38

Sequence Diagram Examples

The following three Sequence diagrams show a more detailed
view of CreateReservation:

1. Primary (successful) scenario and a secondary
(unsuccessful) scenario in one diagram using an alt
fragment

2. Secondary (unsuccessful) scenario where rooms
offered are rejected by the booking agent

3. A Fragment Sequence diagram showing the finer
details for the GetReservationDetails fragment, and
includes a loop fragment

The finer detail has been hidden in fragments.

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 35 of 38

Sequence Diagram Example 1

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 36 of 38

Sequence Diagram Example 2

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 37 of 38

Sequence Diagram Fragment Example 3

Summer School

Object-Oriented Analysis and Design Using UML Module 8, slide 38 of 38

Summary

• Interaction diagrams are used to identify design
components that satisfy a use case.

• Object interactions can be visualized with a UML
• Communication diagram
• Sequence diagram

