Skip Headers

Oracle Data Mining Application Developer's Guide
10g Release 1 (10.1)

Part Number B10699-01
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Master Index
Master Index
Go to Feedback page
Feedback

Go to previous page
Previous
View PDF

Index

A  B  C  D  E  F  G  J  K  L  M  N  O  P  R  S  T  U  W 


A

Adaptive Bayes Network algorithm, 4-6, 4-23
algorithm
mining, 4-3
algorithm settings
Adaptive Bayes Network, 4-6
k-means, 4-8
Naive Bayes, 4-7
Non-Negative Matrix Factorization (NMF), 4-8
Support Vector Machines, 4-7
apply
input and output datasets, 3-10
model, 2-6
results, 4-13
Attribute Importance
using, 2-4
attributes
clustering models, B-1
find, 2-4
target, 4-17
types, 4-17
using, 2-4
automated binning, 3-14

B

binning, 2-4
automated, 3-14
embedded, 3-16
external, 3-14
for k-means, B-1
BLAST
NCBI, 6-1
ODM, 6-2
output, 6-6
sample data, 6-8
BLAST table functions
summary of, 6-13
BLASTN_ALIGN table function, 6-5, 6-23
BLASTN_MATCH table function, 6-2, 6-14
BLASTP_ALIGN table function, 6-27
BLASTP_MATCH table function, 6-4, 6-17
build results, 4-12

C

CLASSPATH for ODM, 2-1
clinical data table, 4-16
clustering models
attributes, B-1
tips, B-1
compute lift, 3-9
constants summary
algorithm settings, 4-22
mining functions, 4-21
cost matrix, 3-12, 4-11

D

data
mining, 4-14
preparation, 2-2, 3-14
data mining server (DMS), 3-1, 3-16
data transformations, 4-17
DBMS_DATA_MINING sample programs, 5-1
DNA sequences, 6-2

E

embedded binning, 3-16
errors summary, 4-25
export and import
model, 4-27
external binning, 3-14

F

feature extraction, B-6
function
mining, 4-3
function settings
summary of, 4-5
functions and algorithms
summary of, 4-4

G

gene expression data table, 4-16
genetic codes, 6-8

J

Java sample programs, 3-17

K

k-Means algorithm, 4-8, 4-24

L

lift computation, 3-9
lift results, 3-10
limitations
Model Export and Import, 4-28
limitations and rules
DBMS_DATA_MINING, 4-18
LocationAccessData (LAD), 3-2

M

matching
sequences, 6-1
matrix factorization, B-6
mean absolute error, 4-13
mining
data, 4-14
models, 4-3
operations, 4-12
results, 4-12
MiningFunctionSettings object, 3-3
MiningModel object, 3-7
MiningTask object, 3-5
model
apply, 2-6, 3-1, 3-10, 3-11
data format, 2-6
building, 2-4, 3-1, 3-6
mining, 4-3
score, 3-1
scoring, 3-10, 3-11
testing, 3-7
results, 3-8
Model Export and Import, 4-27
limitations and prerequisites, 4-28

N

Naive Bayes algorithm, 4-7, 4-23
sample programs, 3-1
NCBI, 6-1
NMF models
tips, B-6
Non-Negative Matrix Factorization (NMF) algorithm, 3-16, 4-8, 4-24
normalization, 2-3, 3-14
NMF, 2-3, B-7
Support Vector Machines, 2-3

O

ODM BLAST, 6-2
ODM PL/SQL sample programs, 5-1, 5-3
ODM programming
basic usage, 3-1
common tasks, 2-1
Java interface, 2-1
PLSQL interface, 4-1
ODM programs
compiling, 2-1
executing, 2-1
operations
mining, 4-12
output of BLAST query, 6-6

P

performance, 4-18
PLSQL interface, 4-1
preparation
of data, 3-14
prerequisites
Model Export and Model Import, 4-28
prior probabilities, 3-13, 4-10
protein sequences, 6-4

R

real-time scoring, 3-12
results
apply, 4-13
build, 4-12
lift, 3-10
mining, 4-12
test, 4-13
root mean square error, 4-13
rules and limitations
DBMS_DATA_MINING, 4-18

S

sample programs
DBMS_DATA_MINING, 5-1
Java, 3-17
ODM PL/SQL, 5-1
scoring
data, 2-6, 3-10
real-time, 3-12
sequence matching, 6-1
sequences
DNA, 6-2
protein, 6-4
settings table, 4-4
SH schema, 5-3
subprograms
DBMS_DATA_MINING, 4-26
Support Vector Machines algorithm, 3-16, 4-7, 4-23
normalizatioin, 2-3
SVM models
tips, B-2

T

target attributes, 4-17
target value, 3-9
TBLAST_ALIGN table function, 6-30
TBLAST_MATCH table function, 6-17, 6-20
test results, 4-13
text mining, 3-16, 7-1
Top-N Frequency, 2-3
transformations, 4-17

U

user views summary, 4-26

W

wide data, 4-14